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How species’ ranges evolve remains an enduring problem in ecology and
evolutionary biology. Species’ range limits are potentially set by the inability
of peripheral populations to adapt to range-edge habitat. Indeed, peripheral
populations are often assumed to have reduced genetic diversity and popu-
lation sizes, which limit evolvability. However, support for this assumption
is mixed, possibly because the genetic effects of range expansion depend on
two factors: the extent that habitat into which expansion occurs is novel and
sources of gene flow. Here, we used spadefoot toads, Spea bombifrons, to con-
trast the population genetic effects of expansion into novel versus non-novel
habitat. We further evaluated gene flow from conspecifics and from hetero-
specifics via hybridization with a resident species. We found that range
expansion into novel habitat, relative to non-novel habitat, resulted in
higher genetic differentiation, lower conspecific gene flow and bottlenecks.
Moreover, we found that hybridizing with a resident species introduced
genetic diversity in the novel habitat. Our results suggest the evolution of
species’ ranges can depend on the extent of differences in habitat between
ancestral and newly occupied ranges. Furthermore, our results highlight
the potential for hybridization with a resident species to enhance genetic
diversity during expansions into novel habitat.

1. Introduction
Explaining the evolution of species’ ranges is fundamental to understanding
how biodiversity is distributed and maintained [1–3]. Species’ ranges are influ-
enced by biotic (e.g. predation, parasitism and competition), and abiotic factors
(e.g. climate) [4,5]. Yet, we still do not fully know how species’ geographical
ranges evolve and what factors fuel range expansions [6,7].

Generally, species’ ranges are limited by the inability of populations at the
range edge to adapt to environmental pressures before going extinct [6,8,9].
Range expansions often result in smaller population sizes at the range periph-
ery and decreased genetic diversity [10–12]. Thus, peripheral populations’
adaptive potential is low and their risk of extinction high. Adaptive evolution
that prevents extinction could occur in such populations via new mutations
or gene flow [8,13]. However, the waiting time for adaptive mutations is poten-
tially too long to rescue edge populations, and gene flow from conspecifics will
most likely consist of alleles from the range centre [14,15], which may be poorly
adapted to the range periphery [8,16].

Whether such gene flow has positive or negative effects will differ depend-
ing on the novelty of the habitat into which expansion occurs. When expansion
occurs into relatively non-novel habitat, gene flow from other conspecific popu-
lations inhabiting similar environments can provide an increase in genetic
diversity or adaptive alleles to foster local adaptation in peripheral populations
[8,17]. By contrast, when expansion occurs into novel habitat, theoretical and
empirical work has shown that gene flow from the centre of the range can
have an opposite effect, generating an influx of maladaptive alleles that prevent
local adaptation in peripheral populations [8,16].
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An alternative to conspecific gene flow as a source of
genetic variation is hybridization with a resident species.
Although hybridization is often deleterious [18,19], it is
sometimes beneficial [20,21]. In such cases, introgression of
heterospecific alleles may provide populations at the range
edge with a source of genetic variation [22,23], including
the transfer of specific adaptive alleles from one species to
another [20,24–28]. This can result in rapid adaptation by
peripheral populations, allowing for further expansion into
the novel habitat [29,30].

Whether hybridization plays an important role in range
expansion remains an open question, especially in animals,
as most tests of the hypothesis have been in plants
[21,29,31]. Yet, evaluating hybridization’s role in the evolution
of species’ ranges is important for ascertaining hybridiz-
ation’s role in the origins and distribution of biodiversity.
Indeed, understanding the relationship between hybridiz-
ation and range expansion is increasingly important for
practical reasons as evidence shows that global change is
altering the distribution of animal and plants species
around the world [32–35] and hybridization events could
become more common as a result [36].

We addressed the above issues with two goals for this
study. Using a population genetic approach, we: (i) ascer-
tained whether encountering a novel environment might
limit range expansion as theory predicts; and (ii) evaluated
the potential role of hybridization in expansion into a novel
habitat.

To achieve these goals, we used Plains spadefoot toads,
Spea bombifrons, as a model system. Spea bombifrons occupy
a wide range throughout the southwestern and central
United States (figure 1) and are thought to be ancestral to
the central plains region [37]. After the most recent glacial
retreat, S. bombifrons appears to have expanded its range
northward [37] through grassland habitat similar to the
ancestral region, with further northern expansion taking
place in current populations [38,39]. By contrast, S. bombifrons
also may have expanded their range southwestward into an
entirely different biome: the desert [37]. Museum collections
record S. bombifrons in the Southwest USA in the late 1800s,
so this expansion is not contemporary. However, in
some populations in Arizona, the relative abundance of
S. bombifrons increased within the last 30 years [40].

Spadefoot toads breed, and their tadpoles develop, in
ephemeral ponds that potentially dry before the tadpoles
successfully metamorphose. This putative southwestward
expansion of S. bombifrons is therefore striking because a lim-
iting environmental factor for these amphibians is ponds that
last long enough for tadpole metamorphosis. Indeed, a con-
gener, S. multiplicata (Mexican spadefoot toad), that is
ancestral to the desert region has shorter developmental
times that enable tadpoles to more likely metamorphose
before their desert ponds rapidly dry [41].

Where S. multiplicata and S. bombifrons co-occur, they
potentially hybridize and produce viable offspring. Female
hybrids can backcross to both parent species (hybrid males
are sterile; [42,43]), thereby generating introgression between
the two species [42,44]. Critically, hybrid tadpoles develop
faster than pure S. bombifrons tadpoles, resulting in a fitness
benefit for the expanding species to hybridize in a dry,
desert environment [45]. In fact, S. bombifrons females that
occur in sympatry with S. multiplicata have evolved faculta-
tive mate preference where they prefer conspecifics when

breeding in deep, long-lasting ponds, but switch their pre-
ference to S. multiplicata in shallow, ephemeral ponds [45].
Consequently, S. bombifrons females primarily contribute
to the production of F1 hybrids and the incidence of
hybridization increases with decreasing pond size [46].

Because S. bombifrons appears to have undergone two dis-
tinct range expansions, and because they hybridize with a
resident species in the context of one of those expansions,
S. bombifrons is ideally suited to address the issues raised
above. We specifically compared the genetic effects of range
expansion into a novel, desert environment with expansion
into a non-novel grassland environment, and ascertained
whether hybridization has potentially facilitated the expan-
sion of S. bombifrons into the southwestern USA. To do so,
we used microsatellites and population genetic analyses to:
(i) investigate patterns of genetic diversity and population
structure within S. bombifrons; and (ii) evaluate patterns
of introgression between S. bombifrons and S. multiplicata.
Because the desert provides a novel habitat, we expected
populations there to suffer genetic effects from bottlenecks
and reduced gene flow compared to populations in the
non-novel grassland habitat. Our findings support these pre-
dictions. Our results also suggest that hybridization has
enhanced genetic variation in populations of southwestern
S. bombifrons; this hybridization might have enabled their
expansion into novel habitat.

2. Methods
(a) Sample collections
We obtained 217 samples of S. bombifrons from 21 locations
across the USA through collection efforts and museum samples
(figure 1). Locations ranged from a grassland environment in
Nebraska to a desert environment in Arizona and included one
location in Arizona that did not overlap locally with S. multipli-
cata (i.e. allotopy) (table 1). Additionally, we obtained 93
S. multiplicata samples from three sympatric locations in Texas
and Arizona (electronic supplementary material, table S1).
Genotype data for the Arizona S. multiplicata individuals
were previously reported in [37]. Adult specimens of S. bombi-
frons from Arizona sympatry and both S. bombifrons and
S. multiplicata from Texas sympatry were used to ensure
accurate species identification (see figure 1 inset photos).
Museum sample IDs are provided in electronic supplementary
material, table S2.

(b) Microsatellite analysis
We genotyped each sample using 10 polymorphic microsatellite
markers that were previously shown to not be in linkage disequi-
librium (electronic supplementary material, table S3; method
details in electronic supplemental materials) [47–49]. We used
the software Arlequin v 3.5.1.2 [50] to calculate observed and
expected heterozygosity for each location (electronic supplemen-
tary material, table S4). Deviation from Hardy–Weinberg
equilibrium was calculated with an exact test contrasting
observed and expected heterozygosity in Arlequin using a
Markov chain with a chain length of 1 000 000 and 100 000 de-
memorization steps. We then corrected for multiple testing
using a sequential Bonferroni correction at a ¼ 0.05 for each
locus in each population. All of our loci were in Hardy–
Weinberg equilibrium in at least 70% of our sampling locations
(electronic supplementary material, table S4).
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(c) Population genetics of range expansion across
different habitats

To understand the impact of habitat novelty on range expansion,
we first examined population structure of S. bombifrons across
non-novel grassland and novel desert environments using the
software STRUCTURE v. 2.3.3 [51]. For the STRUCTURE analy-
sis we also included samples of S. multiplicata individuals
from seven locations. Because we included S. multiplicata in this
analysis, we used only the eight microsatellite loci that could
be amplified in both species (electronic supplementary material,
table S3). We implemented 100 000 burn-ins followed by 200 000
Markov chain Monte Carlo runs. We also used an admixture
model with uncorrelated allele frequencies to avoid the risk of
overestimating the number of populations and the LOCPRIOR

model to provide the software with collection information
for each toad to ensure the detection of subtle population struc-
ture. We started simulations with K values of 1–28, to reflect
the 28 sampling locations (table 1; electronic supplementary
material, table S1). For each K, we ran 10 simulations to check
for consistency between runs, and used the log likelihood [51]
and delta K method [52] to determine the most likely number
of genetic populations (electronic supplementary material,
figure S1). To confirm our results, we used all 10 loci and
calculated F ST and RST statistics [53,54] to measure genetic differ-
entiation between S. bombifrons populations. Permutation tests
(using 10 000 permutations) implemented in ARLEQUIN
v. 3.5.1.2 [50] were used to determine whether pairwise F ST

and RST values were significantly different from 0. We also per-
formed an analysis of molecular variance (AMOVA) and

S. bombifrons

S. multiplicata

potential sympatry

Figure 1. Map showing species’ ranges and sampling locations of S. bombifrons and S. multiplicata. Central Oklahoma is the likely origin of the S. bombifrons range
and grey circles represent S. bombifrons only sampling sites. White circles represent sites with both species sampled. Inset shows breeding S. bombifrons (top) and
S. multiplicata (bottom) males. Sampling site key located in table 1. (Photos by David W. Pfennig; map by Travis Taggart.)
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calculated p-values based on permutation tests (using 1000
permutations) in ARLEQUIN for the northern, central, and
desert regions to examine differences in the level of population
structure across the range. Finally, using RST statistics we
performed a Principal Coordinate Analysis using the cmdscale
function in R (v. 3.0.1).

To understand if habitat novelty results in different coloniza-
tion mechanisms and demographic effects, we used Poptools [55]
to standardize sample sizes to seven individuals per collection
site before comparing levels of genetic diversity (using the
value 1-Qinter, the inter-individual diversity within popu-
lations), which were measured using Genepop v. 4.1.0 [56].
Locations with fewer than seven samples were excluded result-
ing in 17 sites used in the analysis. A sample size of seven was
chosen to optimize statistical power with number of sites.

We also calculated allelic richness using ADZE-1.0 [57],
which uses a rarefaction approach to account for unequal
sample sizes. For this analysis, we set the minimum sample
size per site to seven individuals with no missing data across
all loci. By setting the minimum samples size as seven individ-
uals with no missing data, we optimized the number of sites
used (12 total for this analysis) while minimizing bias that
could result from including sites with too few individuals. We
compared values between grassland and desert regions using a
Welch two sample t-test implemented in R v. 3.1.2.

To examine possible deleterious effects of a novel
environment, we tested for recent population bottlenecks in
S. bombifrons populations with at least 10 individuals samples
using a Wilcoxon test [58] for heterozygosity excess across loci
and a two-phase mutation model in the software Bottleneck
[59]. We accounted for possible null alleles and determined cor-
rected allele frequencies using the Brookfield 1 estimator [60]

implemented in Micro-checker, v. 2.2.3 [61]. We also performed
this analysis with uncorrected frequencies; however results
were not qualitatively different so we only report results based
on corrected frequencies. If novel habitats limit expansion,
we expected signatures of bottlenecks in the desert, but not
grassland, S. bombifrons populations.

(d) Examining genetic effects of hybridization
To calculate the amount of hybridization across the range, we
calculated gene flow between the species in Texas and Arizona
using likelihood ratio tests implemented in the coalescent-
based software package MIGRATE-N 3.2 [62]. For this analysis
we used the Brownian motion approximation to the ladder
(‘stepwise’ or ‘one-step’) mutation model and Bayesian inference
with multiple heating chains to jointly estimate parameters with
three replicates [63,64]. This also allowed us to determine the
directionality of gene flow.

We identified specific loci showing patterns of introgression
by comparing hybrids with both parental species using F ST.
Hybrids were identified as admixed individuals (more than
10% assignment to heterospecific populations) based on inferred
ancestry by STRUCTURE. Using the F ST calculations, we could
detect when admixed individuals were more genetically similar
to the heterospecific, indicating introgression at that locus. We
further identified signatures of introgression at locus SpeaC7
with alleles primarily found in the desert toad, S. multiplicata
appearing in S. bombifrons individuals. We resampled without
replacement to obtain population sizes of 10 and examined
changes in frequencies of the putative heterospecific allele
across the S. bombifrons range. Allele frequency values at
sampling sites were used to generate an allele frequency surface

Table 1. Spea bombifrons sampling location with numbers and habitat information. ‘Type’ indicates whether the locality is sympatric (both species present),
allopatric (outside of the range of one species), or allotopic (within the region of sympatry, but only one species present).

map key sampling location state N type habitat

A Purdhum Nebraska 18 allopatry grassland

B Twin Stars Nebraska 8 allopatry grassland

C Limon Colorado 15 allopatry grassland

D Burlington Colorado 6 allopatry grassland

E Finney Kansas 7 allopatry grassland

F Johnson Kansas 6 allopatry grassland

G Cimarron Oklahoma 8 allopatry grassland

H Ellis Oklahoma 10 allopatry grassland

I Roger Mills Oklahoma 11 allopatry grassland

J Payne Oklahoma 7 allopatry grassland

K Amarillo Texas 13 sympatry grassland

L Hereford Texas 5 sympatry grassland

M Springlake Texas 15 sympatry grassland

N Kermit Texas 12 allopatry grassland

O Arnett Texas 6 allopatry grassland

P Lordsburg New Mexico 11 sympatry desert

Q NMHwy9 New Mexico 11 sympatry desert

R Sulphur Draw Arizona 11 sympatry desert

S Shrimp Arizona 14 sympatry desert

T Zent Arizona 12 sympatry desert

U Wilcox Arizona 11 allotopy desert
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map by inverse distance weighted (IDW) interpolator in ArcGIS
v. 10.4.1 (ESRI, Redlands, California, USA). IDW estimates
values by averaging nearby data points, with closer points
carrying more influence.

3. Results
(a) Range expansion across similar habitat
Across grassland populations (table 1 and figure 1), STRUC-
TURE analysis revealed a clinal pattern of increasing
membership to the ‘green’ group with increasing distance
northward into Nebraska from Oklahoma, the putative
centre of the range (figure 2). This is consistent with a north-
ward range expansion as suggested by previous
observational and genetic data [37–39]. Despite evidence of
a range expansion, S. bombifrons populations showed stable
levels of heterozygosity (F 14,135 ¼ 0.54, p ¼ 0.91; figure 3a),
genetic diversity (F 10,99 ¼ 1.26, p ¼ 0.27; figure 3b) and allelic
richness (F 7,72 ¼ 0.50, p ¼ 0.83; figure 3c) across the grassland
portion of their range from Texas to Nebraska (figure 3).
These latter findings contrast with previous empirical and
theoretical work in other systems showing that an expanding
species will exhibit decreasing genetic diversity [11,12,65–
68]. We further found that F ST and RST values were low
across much of the northern and central portions of the
range (electronic supplementary material, table S5 and
figure S2) of S. bombifrons. An AMOVA analysis using RST

confirmed that differences among sites did not account for
a significant amount of observed variation in the northern
(Kansas, Nebraska, Colorado: 3.4% variation, p ¼ 0.17) or
central (Oklahoma, Texas: 5.18% variation, p ¼ 0.06) popu-
lations. Thus, where S. bombifrons has expanded its range
across similar habitat, it maintains stable levels of genetic
diversity and allelic richness, likely via gene flow among
other grassland populations.

(b) Range expansion across novel habitat
Contrary to the non-novel grassland populations, allelic
richness decreased among desert populations in New Mexico
and Arizona (t4.77 ¼ 6.90, p , 0.01; figure 3c). Additionally,
we found the desert-inhabiting populations to be highly
genetically differentiated compared to grassland populations
in our F ST, RST and STRUCTURE analyses (figure 2; electronic
supplementary material, table S5 and figure S2). Not only are
the southwestern populations significantly differentiated
from the northern and central populations, they are signifi-
cantly differentiated from one another. An AMOVA
analysis using RST confirmed that differences among sites
accounted for increased population structure in the desert
populations (New Mexico, Arizona; 9.33% variation; p ,

0.001). Additionally, we found evidence for bottlenecks
in two Arizona populations (Zent, p , 0.01 and Wilcox, p ,

0.01). Outside of Arizona, we did not detect evidence for
bottlenecks. The decline in allelic richness, high population
structure, and evidence for bottlenecks is consistent with
the desert habitat limiting gene flow and restricting move-
ment among conspecific populations. Nevertheless, genetic
diversity and heterozygosity appear to be maintained
among desert populations of S. bombifrons as neither measure
was significantly different from values found in grassland
populations (genetic diversity: t4.66 ¼ 2.54, p ¼ 0.06; hetero-
zygosity: t6.73 ¼ 1.28, p ¼ 0.24; however the marginal
p-value for diversity could reflect insufficient power to
detect a difference).

(c) Hybridization’s effects on range expansion
To investigate if hybridization might have enhanced genetic
diversity in S. bombifrons in the novel desert habitat, we sur-
veyed S. multiplicata from two areas of sympatry—Texas and
Arizona. We found that outlier S. bombifrons individuals
located in Texas were genetically similar to S. multiplicata,
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indicative of hybridization (figure 2). Additionally, we found
outlier S. multiplicata individuals in Arizona appearing
genetically similar to Arizona S. bombifrons, again pointing
towards hybridization. Rather than equal gene flow between
the species, we found asymmetrical gene flow with the
recipient species differing based on sympatric location.
Migrate-n confirmed these findings, indicating a higher
level of gene flow from resident S. multiplicata to S. bombifrons
in Texas (S. multiplicata! S. bombifrons 5.43 immigrants/
generations; S. bombifrons! S. multiplicata 1.40 immigrants/
generation) but a higher level of gene flow from invad-
ing S. bombifrons to native S. multiplicata in Arizona
(S. bombifrons! S. multiplicata 4.09 immigrants/generation;
S. multiplicata! S. bombifrons 1.89 immigrants/generation).

Additionally, individual examination of the markers
revealed introgression across multiple loci (electronic sup-
plementary material, table S6). For example, in sympatry,
admixed individuals were genetically indistinguishable
from heterospecifics at multiple loci, while showing signifi-
cant differentiation from their conspecific population. For
locus SpeaC7 in particular, a S. multiplicata allele was not
found in high frequencies in central or northern S. bombifrons
populations outside of sympatry, but was maintained at a
relatively high frequency in S. bombifrons throughout the

desert habitat (figure 4). Given that we detected introgression
across multiple loci with only a handful of microsatellite mar-
kers, it is possible that hybridization has introduced a larger
amount of genetic variation than observed here.

4. Discussion
We used Plains spadefoot toads, S. bombifrons, to examine the
population genetic effects of habitat novelty during range
expansion and to evaluate how hybridization with a resident
species can impact genetic variation during expansion into
novel habitat. In contrast to populations in the ancestral
grassland environment, we found that the novel desert
environment was associated with reduced gene flow and
recent population bottlenecks in S. bombifrons. Although
these factors led to a reduction in allelic richness, hybridiz-
ation with the resident S. multiplicata appears to have led to
the transfer of genetic variation in the novel desert habitat.
Such transfer of genetic variation via hybridization might
have facilitated the range expansion of S. bombifrons into a
novel habitat.

Generally, species are expected to evolve expanded
ranges when edge populations adapt to local conditions
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and become sources of dispersers [6,8,9,69]. Adaptability of
peripheral populations therefore sets the limits of a species’
range. A key factor that limits adaptability is genetic diver-
sity: in the absence of genetic diversity, populations are
unable to evolve in response to local selective pressures
[70,71]. Ironically, a common signature of range expansion
is reduced genetic diversity because edge populations are
often the result of serial founder events or suffer population
crashes (and, concomitantly, genetic bottlenecks) [10–12].
Although dispersal and the resulting gene flow among con-
specific populations can reintroduce genetic variation into
peripheral populations [72,73], such gene flow can inhibit
adaptation if alleles from the range centre are maladaptive
at the range edge [8,16]. Moreover, dispersal might be limited
across novel habitat [74–76]. Therefore, the novelty of the
habitat into which expansion occurs might critically impact
the adaptability of peripheral populations.

Our results illustrate this dynamic between range expan-
sion and habitat novelty. In the northward range expansion
into a relatively non-novel grassland habitat, allelic richness
and genetic diversity levels remain high among S. bombifrons
populations (figure 3). Additionally, F ST and RST values
throughout the grassland regions are relatively low,
suggesting ample movement of toads throughout the grass-
land range, which maintains a high level of genetic
diversity and a low level of population differentiation
(electronic supplementary material, table S5). Conversely,
the southwestward range expansion by S. bombifrons

into novel desert habitat showed a different pattern. Desert
populations were highly genetically differentiated not
only in comparison with the rest of the range (figure 2),
but also between closely located populations in the desert
itself (electronic supplementary material, table S5). Such
strong population differentiation was likely influenced by
bottleneck events.

The differences we observe between the northern and
southwestern range expansions by S. bombifrons highlight
how expansion into novel versus non-novel habitats can gener-
ate variation in gene flow and population genetic patterns.
Indeed when a species expands into a similar habitat, gene
flow among populations is more likely to result in mainten-
ance of allelic richness and adaptive potential [8,17]. By
contrast, our results indicate that a novel habitat might restrict
movement, so that populations are less likely to receive
migrants (and genetic rescue) and are more likely subject to
population crashes and extinction. The novel habitat thus gen-
erates a negative genetic impact, which—without some
counterforce—could limit peripheral population adaptability.

One such counterforce is hybridization with a resident
species that is locally adapted [21,30]. In spadefoots, hybrid-
ization with desert-adapted S. multiplicata may be one way in
which S. bombifrons maintains genetic variation in the novel
habitat. Patterns of introgression are consistent with this, as
is our finding that desert populations of S. bombifrons contain
high levels of genetic diversity despite evidence of recent
bottlenecks.

0–0.03
0.03–0.05
0.05–0.08
0.08–0.10
0.10–0.13
0.13–0.15
0.15–0.18
0.18–0.20
0.20–0.23

Figure 4. Introgression and maintenance of heterospecific allele in S. bombifrons. ArcGIS frequency surface map of heterospecific (S. multiplicata) allele at locus
SpeaC7 over the range of S. bombifrons based on observed population frequency at collection sites (black pentagons). See Methods for details. This heterospecific
allele first appears in Texas sympatry and is maintained throughout the desert region. It is present even in the most westward S. bombifrons desert population,
which is allotopic.
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Specifically, we examined two areas of sympatry to evaluate
the effects, if any, of hybridization on S. bombifrons desert expan-
sion. Interestingly, we found that directionality of introgression
differed between these regions (figure 2). In Texas, introgression
was from the resident S. multiplicata into the expanding S. bom-
bifrons, whereas the opposite was true in Arizona. Although
theory predicts that the rarer, expanding species should receive
massive introgression from the resident species, the female
driven hybridization and hybrid male sterility seen in S. bombi-
frons may result in the inverse pattern in Arizona (sensu [77]).
Additionally, a study examining hybrid mate choice in this
system found that hybrid females had no mate preference
between parental species [78]. Thus, the relative abundance of
parental species might drive patterns of backcrossing and intro-
gression in a given region [78]. Indeed in Texas, S. bombifrons are
more common, resulting in a higher likelihood for hybrid
females to mate with S. bombifrons, thereby moving S. multipli-
cata alleles into the S. bombifrons population. In Arizona, by
contrast, there are relatively fewer S. bombifrons, so hybrid
female behaviour might contribute to introgression of
S. bombifrons alleles into the S. multiplicata population. Whether
hybrid behaviour contributes to the patterns of introgression we
observed requires further study. Nevertheless, our data suggest
that S. bombifrons has received S. multiplicata alleles in Texas,
where they initially encountered S. multiplicata.

Furthermore, we found that S. bombifrons has not only
received heterospecific alleles, but has maintained an intro-
gressed allele following their southwestward expansion
deeper into the desert region (figure 4). This allele is main-
tained despite evidence of bottlenecks and low gene flow
among Arizona populations of S. bombifrons (but see
below), and despite introgression primarily from S. bombi-
frons into S. multiplicata in Arizona. We also observed a
relatively high frequency of this heterospecific allele in an
allotopic S. bombifrons population at the western edge of the
species’ range where S. multiplicata is absent. This latter
result emphasizes that ongoing hybridization is not necessary
to maintain this genetic variation. Why this allele persists is
not clear, but one explanation is that it is linked to a func-
tional locus under selection. Such a pattern would be
expected if S. bombifrons acquired adaptive alleles from
S. multiplicata that enabled them to expand into the desert
habitat. Although this explanation is speculative at this
point, we can conclude that the allele is not being purged
from the populations as would be expected if it were
associated with reduced fitness hybrids.

The exception to this pattern of heterospecific allele
maintenance was the sympatric Zent population in Arizona
in which the heterospecific allele is absent. However,
Zent also shows one of the strongest signatures of a
recent bottleneck and is a newly discovered (and possi-
bly newly established) site with very low population size

(N ¼ approx. 12–20 adults of both species in recent sam-
plings). The allele may therefore have recently been lost
through genetic drift.

Although it is possible that this putatively heterospecific
allele was a result of convergent evolution or shared ancestry,
rather than introgression, both possibilities seem unlikely.
Texas S. multiplicata samples have a high frequency of this
allele (approx. 50% in some populations), making it likely
to be shared during hybridization. Additionally, we do not
see significant frequencies of this allele in any S. bombifrons
populations north of the Texas sympatric zone. Given
the spatial pattern of the allele frequency (figure 4), and
that hybridization between these two species occurs [46],
the most parsimonious explanation for its presence in
S. bombifrons is introgression.

As S. bombifrons expanded into the novel desert environ-
ment of the southwestern US, the receipt of S. multiplicata
alleles in Texas could have provided S. bombifrons with adap-
tive genetic variation that enabled them to colonize the novel
habitat and further expand southwestward. Future work
examining differential levels of introgression across the
genome and its adaptive significance, if any, are underway
to evaluate this possibility. Regardless, this study indicates
that hybridization with S. multiplicata has altered the popu-
lation genetics of S. bombifrons. Our findings suggest that
hybridization with a resident species may be a way in
which expanding species can maintain levels of genetic diver-
sity in a novel habitat, which could enable further expansion.
Given shifting species’ ranges [32–35,79] and the likelihood
that hybridization will become increasingly common [36],
the need to evaluate hybridization’s role in range expansion
is more pressing now than ever [30].
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